

# Worldwide Perspectives on Natural Gas Engines

A presentation for the Peer Review Meeting of the DOE Reciprocating Engines Program, 23-24 April 2002

Graham Weller Ricardo, Inc

© Ricardo, Inc. 2002



# Worldwide Perspectives on Natural Gas Engines

#### **CONTENTS**:

- Gas Engines Worldwide
- Natural Gas Worldwide
- The Importance of this DOE Initiative
- Tools to Support the Program
- Brief Survey of Gas Engine Technologies
- Aftertreatment
- Conclusion

## **Gas Engines Worldwide**



- □ The use of gaseous fuels in IC engines is as old as the industry
- □ Although NG has many advantages as an IC engine fuel its suitability for mobile applications has always been limited by its storage density
  - the total market size for NG engines is therefore orders of magnitude smaller than for liquid-fuelled engines
  - market size/potential sales has always governed R & D effort
- Natural Gas is clearly the No. 1 gaseous fuel
  - biogases (landfill & sewage), gasifier gases, mine and industrial process waste gases are all valuable, usable but minor sources
- □ Power Generation (including DER with & without CHP) with IC Natural Gas engines matches a worldwide need

### **Natural Gas Worldwide**



- Vast resources have been identified, but the ability to exploit the potential applications of the fuel is uneven around the world
  - in USA and Europe supply infrastructure and products to operate on the fuel are mature and highly developed
  - future sources of supply are influenced by both politics and economics
- There is not a specific product called Natural Gas
  - the variations in the composition of gases from different sources may have more significance for IC engines than most other 'users'.
  - engine combustion settings to meet Power, Efficiency and Emissions requirements are very sensitive to gas composition
  - variable composition from a single supply is of greater concern than variations between regions
  - engine calibration settings <u>can</u> be adapted to suit, but true 'on-line' changes to wide composition changes is not yet a production reality

## Is the NG engine a natural choice for DER?



- Not really!
- The worldwide market for gas engines in the 1- 10 MW/unit class is increasing but slowly
  - North America is the region with the largest market due to national and local policy support ?
  - Central and SE Asia show significant growth, counterbalanced by falling opportunities in the Middle East
- The environmental advantages of using NG are not in doubt
  - emissions levels are not generally preventing sales (emissions have not driven the gas engine market in gas compression)
  - in some cases, however, the poorer efficiency and higher first costs of gas turbines are accepted, even in the 1-10 MW power range, to meet emissions targets
  - concern over the reliability/durability of IC engines has contributed to gas turbine sales

### **DER purchase decisions**



- Usually made on the basis of a rational capital investment appraisal, influenced by many factors including:
  - 1st cost
  - running costs (maintenance costs, fuel cost, ηelec, ηthem)
  - Value of electricity and heat
  - projected life
- Environmental issues are usually hurdles to get over, but benefits are increasingly being recognized as economically valuable
- Environmental and economic evaluations do, together, draw natural gas engines into contention for 1 - 10 MW/unit DER in all regions, not just in USA
  - the European (& other) markets already place strong demand on thermal efficiency (fuel-to-electrical power conversion) and this will increase
  - Japan has very tough NOx limits in main cities and needs some DER

### The Role of the US DOE



#### ■ The DOE initiatives are both vital and welcome!

- They support the market and environmental needs
- They offer funding in an area where cash has been scarce
- They have followed EPA automotive initiatives by setting tough efficiency and emissions targets
  - the auto engine industry has responded well to such targets
- They should help equip US products to compete better worldwide
  - US companies are also taking part in the trend to form worldwide groupings and associations

## **Research Capabilities**



- □ The most advanced research capabilities applicable to IC engine research can generally be found in US universities and national labs
  - outstanding diagnostic, measuring and modeling work has been/is being done, relating to combustion and emissions formation/control
  - main application has been to the transient IC engine case
  - no other state or region could offer equivalent capabilities or skills in support of an IC engine advancement program
- The US gas engine industry has perhaps not fully exploited these capabilities in the past
  - new relationships and ways of working have to be fostered
  - mutual industry/academia skepticism is healthy but can also be restrictive
  - The industry should continue to observe and incorporate ideas, technologies and methodologies from overseas

#### **Research Focus**



- □ There is sometimes a tendency to confine research thoughts to combustion and cycle optimization
  - tribological and materials technologies have a part to play
  - thermal efficiency tends to be related to specific output, so increased unit mechanical and thermal loads have to be accommodated
  - minimum heat rejection to coolant and lubricant is likely to aid electrical generation efficiency
- □ The largest paybacks will however probably come from combustion and cycle optimization or from improvements in reliability and maintenance costs
- ☐ The tools for all these include those advances mentioned earlier, from universities and labs, etc.

## **Gas Engine Technologies**



- Flame propagation through premixed charges (loosely, Otto cycle SI, μ-pilot or DF) has been the dominant combustion approach in gas-fuelled IC engines, for very practical reasons:
  - it was the only feasible system for most of the history of gas engines
  - it has significant low-NOx potential when lean mixtures are employed
    - greater knock tolerance also results, allowing BMEP and Efficiency to be increased
- Alternative combustion regimes are now under consideration
  - High Pressure Direct Injection of gas (HPDI)
    - results in (mixing controlled) diffusion burning
    - high CR can be employed without Air/Fuel ratio control
    - high BMEP without any knock limitation
  - Homogeneous Charge Compression Ignition (HCCI)
    - results in very low NOx emissions

## Premixed Charge - with Flame Propagation



- □ Further improvement can yet be achieved with this Otto Cycle approach
  - better ignition systems (including  $\mu$ -pilot diesel ignition)
    - will allow advances in dilution tolerance
  - fuller application of kinetics models (e.g. GRIMech) with optimization of turbulence structures
    - will describe best environment for ignition
    - will result in fast and more complete combustion of diluted charges
    - will enable role of EGR as a diluent to be better understood
      - combine with air or use EGR alone?
    - potential of EGR with Stoichiometric Charge can be more fully examined, for application of 3-Way Catalyst to give most complete emissions control
    - better mixture preparation & chamber design to reduce Knocking & Quenching
  - Improved mixture preparation
    - intensive application of CFD to gas and air flows in ports and cylinders
  - improved sensing of combustion phenomena for control purposes
    - also sensing of gas composition qualities upstream of engine metering system

## Premixed Charge Developments - current Worldwide Perspective



- The benefits of μpilot ignition are seen in production engines from Japan and Europe (Niigata, MHI and Wärtsilä):
  - higher BMEP and efficiency
  - improved reliability
  - less frequent servicing
- Improvements to mixture preparation techniques, in both pre-chambers and main combustion chambers, published and promoted by Ricardo and then AVL
- Extension of open chamber ignition to larger engines in Europe:
  - SI by Deutz (TBG 632 at 240 mm bore)
  - μpilot by Wärtsilä (W34G at 340 mm bore, then larger)
- Need for high turbocharging efficiency recognized and provided for mainly in Europe:
  - ABB, MAN & MTU

### **HPDI**



- ☐ This approach has been offered for ~10 years for large power generation engines by Wärtsilä (GD series)
  - requires pilot injection of diesel fuel for ignition (as for 'μ-pilot')
  - demands gas at very high pressure for injection (3500-5000 psi)
    - heavy power demand for compression
    - safety issues have expensive solutions
  - delivers BMEP and thermal efficiency of a diesel engine, with very low particulate and reduced NOx emissions (cf. diesel)
  - very few sales ! (price or emissions ?)
- North American work using LNG demonstrates reduced compression power requirement:
  - Locomotive applications
  - Westport developments for smaller, lower cost engines, in demonstration phase. (Cummins/Westport Joint Venture etc.)
- Limited future, due to need for significant de-NOx aftertreatment?

### **HCCI**



- Still a research topic, subject to great interest at present because of very low NOx formation, especially if mixture is diluted
- Possibilities for Automotive applications being considered most intensively at present
  - Control over a rapidly changing speed/load matrix remains an issue- DER applications with mainly steady speed/load should be simpler to achieve good control of combustion
  - Natural Gas may present a greater challenge for this type of operation, particularly where continuous operation at high loads is needed!
  - requires very high temperature for autoignition, especially when lean enough to give low NOx
  - will result in high cylinder pressures
  - very sensitive to gas composition
- □ Future heavily dependent upon good application of Kinetics modeling
  - US exceptionally well-equipped to 'pull this one off'

#### **AFTERTREATMENT**



- □ The quest for high efficiency probably ensures that IC engine-out NOx levels can never meet targets, with any combustion system
  - de-NOx aftertreatment will become an integral part of the engine system
  - the automotive industry worldwide continues to stimulate ideas and research for NOx removal at an acceptable price
  - ideas & know-how for catalysis and other reaction technologies need to be 'tuned' for natural gas combustion products
- ☐ The demands of low first cost will however still require lowest practicable engine-out emissions

## Summary of The DoE IC Gas Engine Program, as viewed Worldwide



- □ The appropriateness of a Governmentally supported gas engine development program to meet future DER requirements is generally accepted throughout the industrialized world to exploit benefits to national energy policy
- The market potential is firm enough for the engine and aftertreatment industries to invest cautiously but enough uncertainty remains to require enlightened governmental support
- Many technical challenges lie ahead for natural gas engines in DER applications and a well managed collaboration between industry and Government should bring mutual benefits to all